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Abstract— We consider the problem of determining the correct
set of sensors to employ in the design of large area undersea
surveillance sensor networks. As sensor technologies evolve, such
networks are becoming increasingly practical. In turn, optimal
selection of the number and type of sensors to deploy becomes
an increasingly nontrivial process. Choices of field level detection
and false alarm performance, as well as cost, all enter into this
tradeoff decision space. In particular, the multiobjective nature
of the problem leads to families of ”optimal” solutions that each
correspond to different tradeoffs between these often conflicting
objectives. In this paper, we address these tradeoffs using a simple
model of multi-sensor search performance and show the tradeoffs
as Pareto efficient sets of solutions that satisfy system constraints.
We also provide a means to determine the specific characteristics
of the systems that lead to different design choices and explain
how these designs perform as comprehensive search systems.

I. INTRODUCTION

The general goal in deploying large distributed sensor
networks is to detect and/or track a target that has entered
the surveillance region [1]. Design choices often begin with
deployment of as many sensors as is feasible within the
surveillance region [2]. However, in the undersea domain,
sensors are necessarily complicated, finely-tuned engineered
devices. If these are sensors of the large gain variety, they
become individually costly and a highly populated field de-
ployment becomes an expensive venture [3]. Unfortunately,
cost concerns are often evaluated as an afterthought to a design
in the form of an ancillary objective or a limiting constraint.
We thus explicitly include cost regulation as an a priori design
objective. To avoid the high costs of large range sensors (such
as with large acoustic arrays), an alternative is to deploy more
numerous but less expensive shorter range sensors. However,
such sensor characteristics can often lead to unnecessarily
large numbers of false alarms; the regulation of which is often
another initially unstated design objective. We thus include
field level false alarm performance as an explicit system design
objective in our sensor field construction. Managing the trade-
off between detection performance, false alarm performance,
and cost is fundamental to the evaluation of appropriate trade-
offs between sensor characteristics and numbers. The mapping
of this tradeoff space is a multiobjective design optimization
problem [4] whose solution yields a Pareto tradeoff curve.

To perform the multiobjective optimization of sensor char-
acteristics, we employ analytical models of system perfor-

mance that connect the design parameters of sensor numbers,
sensor detection threshold, and fusion strategy to the design
objectives of maximal detection performance, minimal false
alarms, and minimal cost. The field level performance of dis-
tributed sensor networks involves more than the concatenation
of numerous individual sensor detection decisions, specifically,
it involves the examination of multiple sensor detections that
all originate from the same target over a fixed interval of time.
We refer to this process as track-before-detect (see [5] for a
description), since the final determination of a target presence
is not made until multiple sensor detections occur and are
kinematically consistent with target motion (the track). Thus,
the process is more of a process of search (searching for the
combination of detections that are consistent with a target
track) rather than mere detection, and therefore we refer to
the field level detection performance by the terms probability
of successful search PSS and probability of false search PFS .
Successful search is an important objective since it is the tac-
tical purpose for deploying the sensor network. Unfortunately,
false search often becomes an equally important objective
since false searches lead to the expenditure of valuable assets
in prosecuting each false search result. Furthermore, cost is
always an objective, and becomes especially important in cases
where the sensor network is deployed and not retrieved.

In the next section, we review the derivation of expressions
for probability of successful search and probability of false
search for modeling the track-before-detect process. We then
describe a numerical multiobjective optimizer and use it to
identify tradeoff surfaces that show how different choices
of system parameters lead to different implied preferences
amongst the objectives. In all cases, we restrict our attention to
homogeneous fields of sensors that are spatially distributed in
a uniform random manner (randomly sampled from a uniform
distribution).

II. SENSOR NETWORK PERFORMANCE MODELS

We model the process of track-before-detect by considering
the interaction of m sensors with a single target traveling
within the bounded search region S ⊂ R2. We assume
the sensor processing and target characteristics are known to
an extent such that the target detection process for a fixed
sensor-target geometry is well-understood. In order to have
a sensor detect a target traveling at speed v and constant
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heading over a period of time ∆t, the target must come
within the detection radius Rd of the sensor and stay within
that range for a period of time δt (corresponding to the
sensor’s detection processing). This creates an effective sensor
detection range of r2

d = max{0, R2
d − (v δt/2)2} which is the

instantaneous range required between the sensor and target
for a detection opportunity to occur. Even when a detection
opportunity occurs, there is still a non-zero probability that
the target will not be detected. We model this probabilistically
by a probability of detection pd (with 0 < pd < 1) defined
as the conditional probability that a sensor that falls within
instantaneous range rd reports a detection.

Assume there are m identical sensors which are deployed
uniformly (uniform random) over the search region S of area
a0 (such that

∫
S dx = a0). The probability of having k of the

m sensors report detections over the target time ∆t is modeled
as the result of a spatial Poisson process [6] with density pdφ.
Based on the Poisson model, the probability of a successful
search (defined as the occurrence of at least k detections) is
given by

PSS = 1 − exp(−pdmφ)
k−1∑
j=0

(pdmφ)j

j!
(1)

where

φ =
2rdv∆t + πr2

d

a0
(2)

represents the fractional measure of the region of detectability
of a target relative to the entire search region S. This detection
performance model (1) explicitly depends on the target time
interval ∆t (via φ) to account for scenarios when the sensor
detection regions do not overlap (i.e. when there are holes in
the instantaneous coverage) yet the target motion allows for
the multiple sensor detections to occur over the extended time
interval.

We similarly consider the occurrence of at least k false
alarms that are kinematically consistent with target motion as
a false search. We do not consider the case of mixtures of real
and false detections providing a false search. In this context,
that implies the false alarms must occur within a restricted
geometric region that is consistent with the detectable region
of the target, that is, a region of size defined by the area
fraction φ. For false alarms that occur independently at rate
FAR, the probability of any sensor reporting a false alarm
during an arbitrary target time interval of length ∆t is given
by pfa = 1 − exp(−FAR · ∆t) ≈ FAR · ∆t where the
approximation holds for small arguments of the exponential.
These sensor false alarm events occur as a set of independent
probabilistic events with a similar spatial density as in the
successful search expression, however, the location of the
region of target detectability is now of arbitrary orientation,
leading to a probability of false search of

PFS = 1 − exp(−πpfam)


k−1∑

j=0

(pfamφ)j

j!




π/φ

(3)

which has been validated with comparisons to Monte Carlo
simulations. Equations (1) and (3) represent the probability
of successful search and probability of false search associated
with uniformly distributed sets of sensors in a multi-sensor
target detection strategy.

Design goals of increasing successful search while decreas-
ing false search can obviously be met by increasing numbers
of sensors m and/or detection range Rd while decreasing the
false alarm rate FAR. The reason why this strategy is not
employed in practice is due to the practical limitation of cost.
In [3], a simple cost model of passive acoustic sensor nodes
for undersea sensor networks was developed for cost-effective
coverage studies. We recreate that cost here for providing
constraints for tradeoff studies. Specifically, each sensor node
is modeled as a small coherent array (for fixed false alarm rate
FAR and detection probability pd) with cost given by a fixed
(overhead) cost and a per-channel cost, specifically

CNODE(Rd) = FC + CCHMCH(Rd) (4)

In this model, MCH(Rd) = αR2
d is the cost factor for

achieving a certain range limit Rd (assume each sensor node
is short range) leading to the cost model of

CNODE(Rd) = c0 + c1R
2
d (5)

for fixed coefficients c0 and c1. Values of c0/c1 ≈ 20, 000 m2

have been found [3] to be consistent with deployable au-
tonomous passive acoustic sensor nodes. Given this nodal cost,
the cost of the field of m sensors is given by

CFIELD(m, rd) = m · CNODE(Rd)
= mc0 + mc1

(
r2
d + (v δt/2)2

)
(6)

where we have written the expression in terms of the effective
sensor range rd in favor of the original Rd as described
above. The objective functions provided in equations (1), (3)
and (6) provide analytical representations of the general field
design goals. Specifically, these are functions of the fixed
scenario parameters {a0, v, δt, ∆t} and the adjustable sensor
field parameters {pd, pfa, rd, m, k} which must be chosen to
optimize the various objectives.

III. NUMERICAL DETERMINATION OF TRADEOFFS

To numerically determine the tradeoffs between objectives,
we treat the problem as one of constrained multiobjective opti-
mization. For instance, we may want to achieve simultaneously
some or all of the following simultaneous goals: maximize
PSS , minimize PFS , or minimize CFIELD. Such problems
are historically treated as cost/benefit analysis problems, where
the mathematical goal is to find the “knee” in a performance
tradeoff curve between conflicting objectives. The tradeoff is
represented mathematically by the notion of Pareto optimality
or non-dominance of the objective vector. Specificaly, a Pareto
optimal solution is one where no single objective can be
improved without deteriorating at least one of the others. Thus,
the set of all Pareto optimal points (or Pareto set) provides an
accurate representation of the tradeoff among the conflicting
objectives.



A. Pareto Set Generation Method

Many different approaches to generating numerical approx-
imations to Pareto sets are available (see [4] for an overview).
Most approaches fall into two categories: gradient-based meth-
ods that rely on solving many single-objective problems based
on different objective combinations and evolutionary methods
that iteratively modify a group of designs to create a “better”
group of designs which approximate the Pareto set. The former
methods suffer from issues of local convergence (due to the
complexities of the combined objectives), where the latter
suffer from sparse representations of the Pareto set. Either
issue makes it difficult to generate results from which to infer
design and employment guidance. In order to overcome the
limitations of prior methods, we developed a new method
of multiobjective optimization, named Genetic Algorithm-
based Normal Boundary Intersection (GANBI) [8]. GANBI
employs features of gradient based methods to combine the
objectives but does so in an evolutionary manner that attempts
to iteratively modify a group of designs to approach the Pareto
set.

The approach that the GANBI method takes to multiob-
jective optimization is based on a genetic modification of
the normal boundary intersection method of Das and Dennis
[9]. The algorithm functions as follows. First, we optimize
each objective independent of the others, but still under
the overall system constraints. Let X represent a choice of
parameter values, and let fj(X) represent the j-th objective
evaluated at those parameter values. Assume, without loss
of generality, that fj(X) is a minimization objective (if not,
replace fj(X) �→ −fj(X)). Then define f∗

j as the optimal
value of the j-th objective when the optimization is performed
independent of the other objectives, and let X∗

j represent the
corresponding set of parameter values; therefore f∗

j = fj(X∗
j ).

The convex hull formed by combining all of these individual
objective optimizations (ie: a line segment in 2D, a triangle in
3D, etc.) is a very crude approximation to the Pareto surface.
This convex hull is mathematically represented as

CH = ΦB + [f∗
1 , f∗

2 , . . . ]T (7)

where Φ is the matrix whose (i, j)-th component is given by
Φi,j = fi(X∗

j ) − fi(X∗
i ) and

B = [b1, b2, . . . ]T ,
∑

bi = 1, bi ≥ 0 (8)

This set CH represents all the possible convex combinations
of the individual minima.

We form a set of normal lines to this convex hull, and seek
to find “designs” (that is, sets of parameters) that translate
to points in the objective space along these normal lines. Of
the designs that lie on (or very close to) the normal lines,
we seek those that lie furthest from the convex hull of indi-
vidual minima while still meeting all of the constraints. This
concept is illustrated graphically in Fig. 1 for a two-objective
minimization problem. Here the arrows are the normals and
the goal is to move as far along each arrow as possible.
Mathematically, for a design point X with multiobjective value

f
1

f 2

Fig. 1. Graphical description of the GANBI solution technique showing
Pareto set (red), indvidual minima (x), convex hull (black), and normal lines
(dotted arrows)

F = [f1(X), f2(X), . . . ]T , we form the distance to the
normal lines as

di =
∣∣ (I − A(AT A)−1AT ) (F ∗ − F − ΦBi)

∣∣ (9)

where A = ΦU (with U as a vector of all ones) and | · |
represents the L2 norm. Note that Bi is the specific B-value
that corresponds to the normal line under consideration. The
distance from CH measured along the normal is correspond-
ingly given by

zi = (AT A)−1AT (F ∗ − F − ΦBi) (10)

and these two measures are combined according to hi = di −
2zi. This gives a new objective hi for each design point X
that measures how far its objective values are away from the
convex hull combined with distance to the i-th normal line
(the weighting value of 2 in the hi definition was determined
empirically to speed convergence). All of the hi objectives
have the goal of minimization (effectively making di small and
zi large), leading to a multiobjective minimization problem.
The solution with this new set of objectives {hi(X)} tends to
spread points along the Pareto set approximation because the
normal lines are naturally spread along the convex hull.

We simultaneously apply each design to all of the GANBI
normals using a multiobjective genetic approach. In this man-
ner, each of the arrows (indexed by i) in Fig. 1 represents
a new objective hi in some abstract objective space. The
objective space {hi} is then explored in a multiobjective
genetic sense (using existing solution techniques) to arrive at
a set of solutions that span the Pareto front in this abstract
objective space, which become (by default) very well-spread
in the true objective space. In this manner, the GANBI method
behaves as a preprocessor for other multiobjective solvers. We
have examined the benefits and computational costs of this
new method with many genetic multiobjective approaches, and
we have concluded that Deb’s NSGA method [7] provides the
best performance [8].



When applying GANBI to a particular problem, a set of
parameters X refers to a design. At each optimization iteration,
a set of designs is formed and each of their locations in
the GANBI objective space {hi} is obtained. These objective
and parameter values are fed to the NSGA multiobjective
optimization solver, and a new set of designs is generated
according to the rules of the NSGA algorithm. Ideally, the
iterates would repeat until convergence; in practice, a large
number of iterations is run until very minor changes occur
between iterations. When constraints are included in the prob-
lem description, we use a penalty method [10] to artificially
increase the objective values {hi} of designs that violate the
constraints. The magnitude of this penalty is tied to the degree
of constraint violation.

B. Numerical Results

For the distributed sensor design problem, there are three
objectives of interest: maximize PSS , minimize PFS , and
minimize CFIELD. While numerically tractable, it is generally
difficult to visualize the resulting Pareto set for three-objective
problems like this. In particular, it is difficult to read-off
specific values of the individual objectives at points along
the surface that defines the Pareto set. For that reason, we
effectively remove the cost objective by replacing it with
a cost constraint of the form CFIELD ≤ Cmax and make
repeated two-objective solutions for various chosen values of
Cmax. This process is similar to the ε-constraint method [4]
of nonlinear multiobjective optimization; the difference here is
that we only apply the constraint to a single objective and are
still left with a Pareto tradeoff problem in two-objective space.
This Pareto tradeoff problem is restated in minimization form
as follows:

min
X

[
1 − PSS(X)

PFS(X)

]
, s.t. CFIELD(X) ≤ Cmax (11)

where X is the set of adjustable design parameters.
In addition to design parameters, there are fixed scenario

parameters that define the specific application of the sensor
network. If design robustness to scenario variations is desired
(such that a single sensor choice performs well across the set of
expected scenarios), then the entire objective evaluation may
be marginalized with respect to a statistical prior distributed
for these values. This assessment of robust designs is a subject
of future study; for this example, we consider a single fixed
scenario.

To avoid dealing with the complexities associated with
a variety of processing choices, we also fix the values of
the parameters {pd, pfa} and assume the resulting rd values
are appropriately scaled to match the fixed values. For our
example, we use the following fixed parameter values: v =
5kts, δt = 40sec, ∆t = 30min, a0 = 100nmi2, c0 =
$120, c1 = $0.006/m2, pd = 0.9, and pfa = 0.044. Note
that the value of pfa corresponds to a probability of false
alarm of 10−3 over the sensor integration time δt. The set
of adjustable design parameters consists of sensor range rd,
number of sensors m, and number of required detections k.

The achievable values of these adjustable design parameters
are bounded according to 0 ≤ rd ≤ 104m, 1 ≤ m ≤ 105, and
k ∈ {1, 2, 3, 4}. Such bounds are applied to avoid impractical
designs (such as having too many sensors to deploy).

We first consider the design of a sensor field to cover the
search area of size a0 subject to a cost constraint of Cmax =
$1, 000, 000. To develop the tradeoff between maximizing PSS

and minimizing PFS , problem (11) was solved using the
GANBI approach for the parameters X = {rd,m, k}. We
ran 200 iterations of the genetic algorithm with 4 GANBI
normals using 100 individual designs in the population at each
iteration. The total number of designs investigated (2 × 104)
represents a very small sampling of the design space. With the
parameter set X represented in the genetic algorithm by a 32-
bit binary string, the fraction of the design space sampled was
approximately 4 × 10−6. Thus, the GANBI method provided
a very efficient sampling of the design space.

Figure 2 shows the resulting approximate Pareto set com-
puted for this case. Rather than showing the minimization
objectives of equation (11) directly, the plot shows perfor-
mance of the sensor field in a manner similar to a ROC curve.
The vertical axis represents the logarithm of the probability
of false search converted to probability of occurrence per day.
Specifically, it is given by

log10

(
1 − (1 − PFS)86400/∆t

)
(12)

which is a monotonic function of PFS , thus the goal of
minimizing PFS corresponds to values lower on the plot. The
horizontal axis represents the probability of successful search,
and the objective of minimizing (1 − PSS) corresponds to
values on the right of the plot. Thus, the multiobjective design
goal corresponds to the lower right of the plot. The point on
the upper left is included since many trivial designs lead to
regular false searches with no successful searches (i.e. use
a sparse set of few short-range sensors with k = 1). The
results show a clear optimal tradeoff between designs with
good search effectiveness and many false searches (upper right
of plot) and designs with poor search effectiveness but less
false searches (lower left of plot). In table I, the specific
parameter values of the three labeled points along the tradeoff
are identified. From these values, it is clear that the designs
corresponding to the Pareto set all have approximately the
same sensor range (rd ≈ 300m), and the number of sensors
used provides the variation along the curve (more sensors leads
to higher PSS and PFS whereas fewer sensors leads to lower
PSS and PFS). This trend shows that an optimal sensor can be
designed and the number employed in the field can be chosen
later to meet the desired performance tradeoff. The number of
required detections k varies somewhat sporadically along the
tradeoff curve because of the sparsity of the resulting sensor
fields.

We next consider a scenario whose only difference with
the previous example is in the cost constraint. Specifically,
we relax the cost restriction to Cmax = $5, 000, 000 in
order to examine the impact of more densely populated fields.
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Fig. 2. Approximate Pareto set for Cmax = $1, 000, 000.

TABLE I

DESIGN VALUES FOR POINTS CALLED OUT IN FIG. 2.

Point k m rd

A1 2 985 313 m

B1 1 396 299 m

C1 3 131 314 m

The resulting Pareto set approximation is shown in Fig. 3.
Obviously, the relaxed cost constraint allows the optimal
tradeoff to be pushed closer to the desired goal of the bottom
right. However, once again the results show a clear optimal
tradeoff between designs with good search effectiveness and
many false searches (upper right of plot) and designs with
poor search effectiveness but less false searches (lower left of
plot). Table II gives the parameter values corresponding to the
three labeled points on the tradeoff. The nearly perfect search
effectiveness of point A2 is achieved by using many sensors
of shorter range (albeit a longer range than found in the more
cost-restrictive case), leading to necessarily larger probability
of false search. As the sensor range increases (point B2), fewer
sensors are needed – leading to less chance of a false search at
a cost of slightly lower search effectiveness. Finally, the point
C2 shows a very low search effectiveness obtained by reducing
the number of sensors m to the number of detections required
k, although the false search almost never occurs. We note
that this point occurs at the edge of the design space (recall
that rd is limited to rd ≤ 104m. Once again, the variation of
the number of required detections k has little impact on the
resulting tradeoff, although larger values of k are required for
these densely populated sensor fields.

In general, these numerical results show a trend that has
been an intuitive notion in sensor field design: larger numbers
of shorter range sensors used to obtain large PSS with large
PFS versus smaller numbers of larger range sensors used
to obtain lower PFS with low PSS . In these examples, we
showed that this trend is an optimal tradeoff only when the
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Fig. 3. Approximate Pareto set for Cmax = $5, 000, 000.

TABLE II

DESIGN VALUES FOR POINTS CALLED OUT IN FIG. 3.

Point k m rd

A2 3 241 1312 m

B2 3 8 9529 m

C2 3 3 9914 m

field cost constraint is not too restrictive. For very restrictive
cost constraints (and hence, very sparse fields), the optimal
tradeoff is achieved by simply varying the number of sen-
sors employed with each sensor reflecting a single optimal
detection range. Thus, the specific value of the constraint
employed must be taken into consideration when making pre-
employment design choices.

IV. CONCLUSION

We examined the impact of system design parameters on
multiple objective design tradeoffs for undersea distributed
sensor networks. Specifically, we examined how the scale of
the field (given by range of each sensor and number of sensors
employed) as well as the number of multi-sensor detections
to use in track-before-detect affect the performance of a
sensor network. Performance was measured in terms of search
effectiveness, false searches, and cost. In general, optimal
tradeoffs for a fixed cost constraint lead to design choices that
span from good search effectiveness at the expense of more
false searches to poorer search effectiveness with minimal false
searches. The decision of where to operate on this tradeoff
curve is left to the operator and/or decision-maker.

If cost constraints are very strict, it was shown that an
optimal sensor size may be determined that is independent
of the search performance tradeoff goal, whereas for less-
restrictive cost constraints, the optimal size depends on desired
search/false-search effectiveness. This result informs the intu-
itive notion of trading off between many short-range sensors
and few long-range sensors by showing how overall cost
constraints may prohibit such tradeoffs from being optimal.



The tradeoffs resulting from these analyses may be used
to provide insight into both design and employment decision-
making. Furthermore, adaptive employment decisions based
on observed performance become more informed when they
are based on optimal tradeoffs between design goals. Future
extensions of this work include the addition of the complexities
associated with nonuniform sensor placement as well as those
due to nonuniform environmental characteristics.
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